Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP.

نویسندگان

  • Gabriela A Eggimann
  • Stefanie Buschor
  • Tamis Darbre
  • Jean-Louis Reymond
چکیده

Cell penetrating peptides (CPP) are peptides of 10 to 30 residues derived from natural translocating proteins. Multivalency is known to enhance cellular uptake for the Tat peptide and closely related polycationic sequences. To test whether multivalency effects on cellular uptake might also occur with other CPP types, we prepared multivalent versions of the strongly cationic Tat, the amphipathic sequences Antp, pVEC and TP10, and the polyproline helix SAP by convergent thioether ligation of the linear CPP onto multivalent scaffolds, and evaluated their uptake in HeLa and CHO cells, intracellular localization, cytotoxicity and hemolysis. While multivalency did not increase the cellular uptake of pVEC or SAP, multivalency effects on uptake comparable to Tat were observed with TP10 and Antp, which are attributable to their polycationic nature. The efficient synthetic protocol for these divalent CPP and their localization in the cytoplasm suggest that CPP might be useful for application in cargo delivery into cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell-Penetrating Peptides Selectively Cross the Blood-Brain Barrier In Vivo

Cell-penetrating peptides (CPPs) are a group of peptides, which have the ability to cross cell membrane bilayers. CPPs themselves can exert biological activity and can be formed endogenously. Fragmentary studies demonstrate their ability to enhance transport of different cargoes across the blood-brain barrier (BBB). However, comparative, quantitative data on the BBB permeability of different CP...

متن کامل

Comparative Immunogenicity of a Cytotoxic T Cell Epitope Delivered by Penetratin and TAT Cell Penetrating Peptides.

Cell penetrating peptides (CPP), including the TAT peptide from the human immunodeficiency virus transactivator of transcription (HIV-TAT) protein and penetratin from Drosophila Antennapedia homeodomain protein, translocate various cargos including peptides and proteins across cellular barriers. This mode of delivery has been harnessed by our group and others to deliver antigenic proteins or pe...

متن کامل

Chondroitin sulfate as a molecular portal that preferentially mediates the apoptotic killing of tumor cells by penetratin-directed mitochondria-disrupting peptides.

The use of cell-penetrating peptides (CPPs) as drug carriers for targeted therapy is limited by the unrestricted cellular translocation of CPPs. The preferential induction of tumor cell death by penetratin (Antp)-directed peptides (PNC27 and PNC28), however, suggests that the CPP Antp may contribute to the preferential cytotoxicity of these peptides. Using PNC27 as a molecular model, we constru...

متن کامل

Cationic cell-penetrating peptides interfere with TNF signalling by induction of TNF receptor internalization.

Cationic cell-penetrating peptides (CPPs) have been used widely as delivery vectors for the import of molecules that otherwise do not cross the plasma membrane of eukaryotic cells. In this work, we demonstrate that the three cationic CPPs, Antennapedia homeodomain-derived peptide (Antp), nona-arginine and Tat-derived peptide, inhibit tumour necrosis factor (TNF)-mediated signal transduction. Th...

متن کامل

Peptide conjugates for chromosomal gene targeting by triplex-forming oligonucleotides.

Triplex-forming oligonucleotides (TFOs) are DNA-binding molecules, which offer the potential to selectively modulate gene expression. However, the biological activity of TFOs as potential antigene compounds has been limited by cellular uptake. Here, we investigate the effect of cell-penetrating peptides on the biological activity of TFOs as measured in an assay for gene-targeted mutagenesis. Us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 11 39  شماره 

صفحات  -

تاریخ انتشار 2013